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This study examines the influence of coherent structures and attendant microfronts on 
scaling laws. Toward this goal, we analyse atmospheric observations of turbulence 
collected 45 m above a flat surface during the Lammefjord Experiment in Denmark. 
These observations represent more than 40 hours of nearly stationary strong wind 
conditions and include more than 1600 samples of the main coherent structures. These 
samples occupy about 40% of the total record and explain the majority of the 
Reynolds stress. 

To study the dependence of the scaling laws on the choice of basis set, the time series 
of velocity fluctuations are decomposed into Fourier modes, the local Haar basis set 
and eigenvectors of the lagged covariance matrix. The three decompositions are 
compared by formulating joint projections. The decompositions are first applied to the 
samples of phased-locked coherent structures centred about eddy microfronts. The 
eigenvector decomposition is able to partially separate the small-scale variances due 
to the coherent eddy microfronts from that due to the small-scale structure with 
random phase. In the Fourier spectrum, both of these contributions to the variance 
appear together at the higher wavenumbers and their individual contributions cannot 
be separated. This effect is relatively minor for the scale distribution of energy but 
exerts an important influence on higher-moment statistics. Deviations from the - t 
scaling are observed to be slight and depend on choice of basis set. 

The microfronts strongly influence the higher-order statistics such as the sixth-order 
structure function traditionally used to estimate the energy transfer variance. The 
intermittency of fine-scale structure, energy transfer variance and dissipation are not 
completely characterized by random phase, as often assumed, but are partly associated 
with microfronts characterized by systematic phase with respect to the main 
transporting eddies. These conclusions are supported by both the higher-order 
structure function and the higher-order Haar transform. 

The Fourier and Haar spectra are also computed for the entire record. The peak of 
the Haar energy spectrum occurs at smaller scales than those of the Fourier spectrum. 
The Haar transform is local and emphasizes the width of the events. The Fourier 
spectrum peaks at the scale of the main periodicity, if it exists, which includes the 
spacing between the events. 

1. Introduction 
The following study examines the contribution of coherent structures and 

intermittent fine-scale turbulence to the scale dependence of the kinetic energy and 
higher-moment statistics. We will also examine the sensitivity of such scale dependence 
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to the bases set or statistical tool employed. The Fourier basis set is the most common 
global basis set and a ‘ universal language’ for comparing different data sets. However, 
turbulent eddies are local and non-periodic so that the usual Fourier decomposition 
into Fourier modes can be physically ambiguous as a consequence of Heisenberg’s 
uncertainty principle (Tennekes 1976). This scale ambiguity affects the generalization 
of the Kolmogorov similarity theory to include the intermittency of dissipation and 
subsequently allow for modification of the -$ slope of the Fourier spectrum in the 
inertial subrange (Kolmogorov 1962; Oboukhov 1962; Novikov & Stewart 1964; 
Yaglom 1966; Nelkin & Bell 1978). 

Similarity scaling arguments have been traditionally interpreted in terms of a 
continuous energy cascade to smaller and smaller scales which has been questioned in 
a number of studies (e.g. Frisch, Sulem & Nelkin 1978). As an alternative, large two- 
dimensional vortices may destabilize directly into three-dimensional structures small 
enough to contribute to the dissipation (Pierrehumbert & Widnall 1982). This ‘short 
circuit’ of the energy cascade was allowed in the arguments of Yakhot, She & Orszag 
(1989) and is supported by the analysis of Chorin (1982). The short circuit is most 
commonly posed in terms of non-local interactions in Fourier space (Lesieur 1987). A 
local reverse transfer of energy to larger scales may occur due to small-scale pairing 
(Meneveau 199 1). Because of the nonlinearity of the non-local interactions, Kraichnan 
(1974) challenged the concept of universality of modification of the -$ scaling. With 
such non-local interactions, the large structures induce anisotropy on the smallest 
scales (Yeung & Brasseur 1991). 

The large eddies may possess concentrated sharp gradients (figure 1 a)  or microfronts 
(Chen & Blackwelder 1978 ; Mahrt 1991 a) perhaps associated with eddy collision 
(Morrison & Bradshaw 1991) or outflows from counter-rotating vortices (Blaisdell, 
Reynolds & Mansour 1991) which lead to near discontinuities. These near 
discontinuities contribute directly to the energy at high wavenumbers even though they 
may be an intrinsic feature of the main eddies and associated with changes that are 
coherent on the main eddy scale. For example, the formation of sharp gradients might 
be interpreted in terms of convoluted thin vortex sheets (Hunt & Vassilicos 1991). The 
concentration of fine-scale structure into rods or sheets was inferred by Frisch et al. 
(1978) from the spatial coherency of dissipation. 

Even though the sharp gradients are coherent on the larger scales, they contribute 
to the high-wavenumber energy in the Fourier decomposition and therefore influence 
the overall slope of the Fourier spectrum (Hunt & Vassilicos 1991). As can be shown 
by integrating the Fourier transform by parts (Courant & Hilbert 1953), the spectrum 
is expected to be flatter (relatively more energy at high wavenumbers) when the 
discontinuities extend to lower-order derivatives. More specifically, the slope of the 
Fourier spectrum is bounded by the order of the discontinuity. As a possible example, 
Hunt & Carruthers (1990) note that thin vortex sheets separated by the large-eddy 
lengthscale contribute to the vorticity at the high wavenumbers. They further argue 
that in most turbulent flows, linear distortion by the large eddies strongly influences the 
form of the high-wavenumber spectrum. 

The possible formation of singularities due to rapid vorticity accumulation in vortex 
folds has been discussed in Chorin (1982), Moffatt (1984) and Majda (1991). Majda 
(1 99 1) further discusses the generation of strong deformation, and therefore strong 
velocity gradients, by intense vorticity. More specifically, deformation generates 
vorticity (vortex stretching) while vorticity generates deformation leading to a coupled 
system capable of producing strong localized vorticity and deformation perhaps 
approaching singularities. 



Influence of coherent structures and microfronts on scaling laws 249 

I ‘p’ 
Sweep or wind gust 
(downdraft) Ejection 

p’ > 0 

Haar wavelet 
(b) 

1. I 
1 I - +  t 
............................... 

IJ 
b21 lb22 

aM = L 

aM-l = Ll2 

aM-2 = Ll4 

Fourier 

............................... 1. I 
1 1- L 

4% $1 

V 
.............................. I I.. 

1 I+ 

N> P) 

L 

p = 3  

V 
FIGURE 1. (a) Sketch of a plausible eddy microfront for the case of mean shear and heating 
(parentheses). (b)  The first three basis functions for the different decomposition methods. The 
eigenvectors are low-resolution versions from the LAMEX data set described in 6 5.  

As another example, Saffman (1971) finds the development of well-separated sharp 
gradients of vorticity in idealized decaying two-dimensional turbulence which lead to 
a steep energy spectrum at small wavenumbers, E(k) - kp4. Sheets of large vorticity 
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gradients ‘accumulate ’ (Gilbert 1988) leading to a slightly less-steep spectrum between 
kP4 and kP3 so that again the role of the discontinuities is to contribute more energy at 
high wavenumbers and flatten the spectrum. A similar process leads to flattening of the 
spectrum for three-dimensional turbulence (Moffatt 1984). The dynamical con- 
siderations of Yakhot et al. (1989) also indicated a slightly flatter spectrum compared 
to the -5 slope, as does the B-model of Yamazaki (1990). In contrast, inclusion of 
fractal intermittency of dissipation (Mandelbrot 1976; Frisch et al. 1978) steepens the 
spectrum in the inertial subrange. The more sheet-like and less convoluted the 
turbulence, the steeper the spectral slope. Frisch & Morf (1981) pose the bursts of 
intermittent dissipation in terms of discontinuities resulting from analytical con- 
tinuation of the Fourier transform onto the complex plane. 

The above studies motivate analysis of turbulence time series in terms of near 
discontinuities and attendant coherent structures. For example, is a significant fraction 
of the high-wavenumber energy associated with sharp gradients which are a coherent 
part of larger eddies? Or, are the high-wavenumber part of the Fourier energy 
spectrum and the higher-moment statistics dominated by fine-scale isotropic turbulence 
with random phase with respect to the coherent structures? Do the scaling laws and the 
influence of coherent structures on such scaling laws depend on the choice of basis set? 

Motivated by such questions, this study examines scaling laws for samples of phase- 
locked coherent structures containing microfronts selected from a 40 hour record of 
turbulence for unusually stationary atmospheric conditions. These scaling laws are 
compared with those computed for randomly selected samples and those computed for 
the entire record. The majority of the velocity variance and momentum flux can be 
explained by the coherent structures containing microfronts. The microfronts appear 
to be the leading edge of sweeps. The microfronts are not discontinuities and their 
thickness appears to be large compared to the Kolmogorov scale. Direct eddy 
simulations, reported in Gerz, Howell & Mahrt (1994), indicate that the microfronts 
are the leading edge of outflows from counter-rotating vortices. The relationship of 
microfronts in this study to such vortices, or other types of parent eddies (e.g. 
Morrison, Subramanian & Bradshaw 1992), cannot be unambiguously determined 
from the tower data. 

After briefly describing the data in the next section, we outline the mathematical 
definitions of the decompositions (8 3). Mapping or transfer matrices between the 
different decompositions are derived in the Appendix and computed from the data in 
94. 

2. The data 
The data consist of a 40 hour time series of strong, nearly stationary, atmospheric 

turbulence data (Kristensen et al. 1989). Sonic anemometer measurements of the three 
wind components at 45 m above ground were recorded at 16 Hz. The sonic has a 
distance constant of 1.2 m which is the effective resolution of the data. While the data 
provide an unprecedented sample size, the resolution permits examination of only the 
larger-scale part of the -f scaling region. Because of the high Reynolds number, these 
data still include almost two decades of -5 scaling. A few atmospheric data sets have 
been collected with hot-wire measurements which include three to four decades of -$ 
scaling ; however these data sets are characterized by significant diurnal variation of 
stability so that only a few hours of data can be analysed with the assumption of quasi- 
stationarity . 

This nearly stationary record of turbulence provides 1680 samples of the main 
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eddies. With the flow speed averaging about 12.5ms-' and turbulence depth of 
roughly 500m, the Reynolds number is more than 10'. Estimating the energy 
dissipation rate from the Kolmogorov scaling law for the -5 scaling region, with a 
Kolmogorov constant of 1.5 yields a dissipation rate of 200 cm2 s - ~  and a Kolmogorov 
length of 0.6 mm. The turbulence kinetic energy is 2.1 m2 sP2 corresponding to a 
velocity scale of about 1.5 m s-' and the stress is 0.5 m2 sP2 corresponding to a surface 
friction velocity of about 0.7 m s-l. The microscale Reynolds number based on the 
Taylor microscale is approximately lo4 while the Reynolds number based on the 
integral scale for vertical velocity fluctuations is lo', where the integral scale is 
approximately 100 m. The Taylor microscale is estimated to be about 12.5 cm, about 
an order of magnitude smaller than the resolution of the data. Pseudo-distance is 
inferred from Taylor's hypothesis using the mean wind speed of 12.5 m s-l. As in 
Antonia, Satyaprakash & Hussain (1982), we do not make higher-order corrections to 
this hypothesis. The flow is characterized by zero external intermittency in the sense of 
Kuznetsov, Praskovsky & Sabelnikov (1992). 

During the 40-hour period, the mean wind speed varied from about 13.5 m s-' at the 
beginning of the period to about 11.5 m s-l at the end of the period. Although 
unusually stationary for the atmosphere for so long a period, the turbulence kinetic 
energy decreased by about 30% over the period with some modulation on the 
timescale of 3-5 hours. The slow trend had no perceptible influence on the scaling laws 
but did decrease the amplitude of the phase-locked composited structures presented in 
55, as inferred by analysing subsegments of the record. 

3. Decomposition 
The partitioning of the record into phase-locked samples of coherent structures is 

discussed in $4. In this section, we summarize the methods for decomposition of the 
samples into orthogonal bases sets needed for the construction of spectra and scaling 
laws. The decomposition of the sth samplef,(x) into the basis set for the Fourier modes 
or the eigenvectors of the lagged covariance matrix can be written as 

where $[x,p] is the pth orthonormal basis function and the sum is performed over the 
P basis functions. For the Fourier transform, the basis functions $[x7p] are defined as 
sines and cosines. For the eigenvector bases set (Lumley 1970; Sirovich 1987; Mahrt 
1991 a, b), $[x,p] is defined in terms of the lagged covariance matrix such that 

where K(x17x) is the lagged covariance matrix, xz and x are two different relative 
positions within the sample record and A@) is the eigenvalue for thepth mode. The first 
eigenvector maximizes sample covariance-explained, the second eigenvector maximizes 
explanation of the remaining covariance of the samples and so forth. 

The transform coefficients W{f , ,p)  are defined as 
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where the sum is defined for a given basis function over the L points in the sample 
record. The value of the transform is proportional to the amplitude of the structure 
contained in,f9(xz) and its similarity to the shape of the basis function. 

Each of the Fourier basis functions correspond to a distinct scale (wavelength). The 
eigenvector basis functions approximately represent decreasing scale with increasing 
eigenvector number p (94). In this respect, each of the P basis functions q5[xl,p] 
generates only one transform coefficient W{ p J 9 }  for each scale. In the orthogonal 
wavelet transform, the basis functions of dilation width a, points generate L/a ,  
coefficients for each scale as the transform translates through the record at an 
incremental distance of a,. In other terms, the wavelet transform at a given scale 
generates a number of coefficients representing different neighbourhoods and this 
number increases with decreasing scale of the basis function. This produces increasing 
spatial resolution with decreasing scale. 

For orthogonal transformations, M dyadic dilation scales are defined such that 

a, = 2" points, m = 1,2. .. , hi' L = 2M.  (4) 

The smaller-scale basis functions contain higher spatial resolution (figure 1 b). The 
actual dilation width is a, Ax, where Ax is the distance between points. The transform 
corresponding to the nth translate begins at the data point 

b,, = I+(n-l)a,; n =  1 ,  ..., N ( 5 )  

so that the first 'translate' (n  = 1) begins at the first point in the sample and N = L/a,  
is the total number of translates equal to 2(M-m,).  

The expansion of the original signal into the wavelet basis set can now be written as 

M N  

f,(xJ = C C w{f,, am, bm,I h[j, bmn,  am13 (6) 
m=l n=1 

where h[l,b,,,a,] is the basis function defined to be non-zero over the points 
[b,,, b,, +a, - 11. The wavelet transform W{f, ,  a,, b,,} is defined as 

where the summation is non-zero over the a, = 2" points of the orthogonal 
transformation where h[l, b,,, a,] is non-zero. 

We choose the Haar basis set (figure 2) written in the form 

-(a,)-;; 0 < 1 - b,, d (a,)/2 - 1, 

"2 b,,, a,] = + tam)-;; (am)/2 G l-bw,, < (a,) - 1, 
0;  l<b,,; 12b,,+a,, 

where I again indicates position within the sample record and b,, is the first point in 
the transformation window. The normalization by (a,)-: provides the basis set with 
orthonormality so that 

where S is the Kronnecker delta. The Haar transform is computed by substituting (8) 
into (7). 
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a, = 8 

FIGURE 2. The Haar basis function for a single dilation, 

The dependence of variance or energy on dilation scale a, is computed by summing 
the transform coefficients, at a given scale, over the different translation positions of the 
transform within each sample record and then additionally averaging over all the 
samples to obtain 

(10) 

where the division by L provides computation of the variance. This distribution (10) 
of variance with scale will be referred to as the wavelet spectrum. Wavelet spectra have 
been previously computed by Yamada & Ohkitani (1990), Mahrt (1991~) and 
Meneveau ( 199 1). 

The projection of the data onto the three different basis sets is constrained by 
‘transfer matrices’ between the basis sets derived in the Appendix. At the same time, 
the scale dependence for variance in one basis set cannot be used to a priori determine 
the scale dependence in a second basis set. This is partly because the Haar basis is local 
and omits phase information with respect to absolute position within the record (the 
implications of this are discussed in $6). Eigenvectors of the lagged covariance matrix 
and, hence, any associated transfer matrices depend on the data itself. 

N l S  
Var[Wa,)I = - c (1/L) c W{f,,a,,b,,), s*=, lz=1 

4. Joint decomposition of the data 
4.1. Sample selection 

We select microfronts, or zones of strong velocity gradients, by choosing samples 
centred about locations of maximum negative values of the Haar transform (Mahrt & 
Frank 1988) applied to the longitudinal velocity component. Other conditional 
sampling techniques seeking sharp gradients yield similar sample sets. The width of the 
sample records is specified to be about 400 m which optimizes capture of the Reynolds 
stress. Therefore microfronts are defined here as extrema of the Haar transform on the 
scale of the main transporting eddies. The composite of the samples selected in terms 
of regions of maximum momentum flux also exhibit concentrated horizontal velocity 
gradients centred in the samples, albeit more diffuse than that for samples selected in 
terms of microfronts. These flux-based samples occupied 50% of the record and 
explained 96% of the total momentum flux. This high percentage is due to partial 
cancellation of positive and negative momentum flux occurring between the samples. 

The scaling laws are not sensitive to increasing or decreasing the width of the 
samples, at least within a factor of 2, even though the individual samples change. With 
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FIGURE 3. (a) An example of a time series segment for the longitudinal velocity component, where 
asterisks indicate centre positions of selected samples and the sample width is 400m. (b) Haar 
transform time series with transform window width of 400 m, where asterisks indicate sampling based 
on the Haar transform. 

much smaller sample width, sharp changes are still identified but they account for little 
momentum flux. Increasing the sample width beyond 400m leads to only gradual 
increases in the captured stress. For example, doubling the width of the sample records 
includes about 15 O/O more Reynolds stress and does not apprecizbly change the form 
of the scaling laws discussed below, Samples wider than about 1 km include structure 
from large 'inactive swirling' motions characterized by weak vertical motion and little 
momentum flux (Townsend 1976). These are the large ramp-like structures on the 
horizontal scales of a few kilometres (figure 3) which visually are the most organized 
part of the longitudinal velocity signal and are responsible for the energy maximum in 
the spectrum for the entire record (figure 10, $6). However these structures exhibit little 
correlation with the vertical motion field, which is organized on smaller scales of a few 
hundred metres. Consequently most of the flux occurs on the scale of a few hundred 
metres which is in the large-scale part of the -: scaling region. This feature determines 
the choice of the 400 m sample record width. 

Since the eddies are distorted by the mean shear, the microfronts (figures 1 a and 3) 
form mainly at the upstream edges of the slower moving updrafts (bursts) and 
downstream from faster moving downdrafts (sweeps). As a result, the skewness of the 
Haar transform of the longitudinal velocity component is negative in pseudo-space 
(positive in time), averaging -0.33. Samples are selected only at locations where the 
extreme values of the Haar transform are negative with respect to distance (positive in 
time) and the absolute value of the Haar transform is larger than its standard 
deviation. The 1680 samples selected by this procedure occupy 37 YO of the record and 
explain about 62 % of the total Reynolds stress. While the microfronts generally occur 
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FIGURE 4. The joint decomposition of energy in Fourier wavenumber-eigenvector space for the 
phase-locked structures. Numerical values at the corner grid points of the joint decomposition are 
indicated. 

at the leading edge of sweeps, a large variety of perturbations on this basic structure 
occur, at least as seen by the tower data. With stricter sampling criteria formulated in 
terms of larger values of the Haar transform, the sampled structures are characterized 
by larger amplitude but occupy a smaller fraction of the record. 

For comparison, a second set of samples are selected with no overlap by 
systematically marching through the record without conditional sampling criteria. 
These samples are automatically selected with random phase with respect to the 
coherent structures. Consequently the random-phase samples, as a population, are 
homogeneous with respect to relative position within the samples, analogous to 
stationary time series. As a further consequence, the eigenvectors of the lagged 
correlation matrix for these samples with random phase approach Fourier modes. 

4.2. Fourier and eigenvector decompositions 
The first eigenvector explains 65 % of the longitudinal velocity variance within the 
microfront samples and is characterized by a simple sharp microfront across which the 
flow decreases sharply in the downstream direction (figures 1 b and 3), as expected from 
the sampling criteria. Of importance is that a simple structure can explain a significant 
fraction of the total variance. 

Because of the sharpness of the microfront, the energy associated with the first 
eigenvector spreads to higher wavenumbers in Fourier space as can be seen from the 
joint Fourier-eigenvector decomposition? of energy Dz((j,p) defined by (A 18) in the 
Appendix and plotted in figure 4. As a result, some of the energy decomposed into 
higher-wavenumber Fourier modes is associated with the microfront and parent eddy 
as represented by the first eigenvector (lower right corner of figure 4). 

In other words, the eigenvector technique is able to separate out the variance due to 
the narrow microfront edges of the coherent parent eddies from the more random fine- 

t Less significant broadening in the joint decomposition occurs at low wavenumbers where a small 
amount of low-wavenumber energy in the joint decomposition extends to intermediate-order 
eigenvectors (left side of figure 4). Some of the intermediate eigenvectors are slowly modulated sine 
waves of intermediate wavenumber and through this modulation contribute some energy to the 
lowest wavenumbers. The fall-off of the Fourier spectrum at the highest wavenumbers may be 
influenced by the electronic output filter of the sonic anemometer. The eigenvector spectrum also 
shows such a fall off, consistent with the fact that the higher order eigenvectors approach Fourier 
modes. 

9-2 
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FIGURE 5. The decomposition of variance of phase-locked samples (----) and random-phase samples 
(-) into (a) Fourier modes, (b) the eigenvectors of the lagged correlation matrix and (c) the Haar 
basis. The spectrum are scaled such that -5 scaling corresponds to a flat line. 

scale structure that appears instead in the higher-numbered eigenvectors. On the other 
hand in the Fourier decomposition, the energy due to both random fine-scale structure 
and the eddy microfronts occurs at high wavenumbers in a non-separable way. 
However, the total contribution of the microfronts to the high-wavenumber energy is 
relatively modest because the microfronts occupy a small percentage of the total area. 

The influence of the spatial inhomogeneity associated with the phase-locked 
coherent structures is mainly confined to the lowest-order modes (largest scales) for 
both decompositions. The first few eigenvectors explain a greater percentage of the 
variance of the coherent structures and capture more of the phase-locked structure 
than the first few modes of the Fourier expansion (figure 5a, b). The oscillation of the 
Fourier spectrum of the phase-locked structures at the low wavenumbers is related to 
the similarity of the samples to a step change. With a pure step change, the Fourier 
transform is non-zero only for the odd modes. 

Since the intermediate- and higher-order eigenvectors have shapes somewhat similar 
to trigonometric functions, their projection onto Fourier space is compact (figure 4). 
Most of the energy in the inertial subrange occurs as an elongated diagonal band in the 
joint decomposition. Because the main inhomogeneity associated with the phase- 
locked structures is captured by the first few eigenvectors, the intermediate- and higher- 
order eigenvectors represent smaller-scale motions with random phase. The eigen- 
vectors for purely random phase motion would be identically Fourier modes. 
Consequently the eigenvector spectrum (figure 5b) obeys the same scaling law as the 
Fourier spectrum for the inertial subrange. Knight & Sirovich (1990) also found an 
inertial-subrange scaling law in terms the eigenvector number which obeys the -! law 
when converted to a one-dimensional energy density spectrum. 
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FIGURE 6. The scale of the eigenvectors estimated in terms of the number of zero crossings. 

The random phase associated with the intermediate- and higher-order eigenvectors 
is also reflected by the distribution of the expansion coefficients for the eigenvectors 
(W(p, s) in (A 12), Appendix) which occur with either sign with equal probability. The 
random phase in the inertial subrange of the Fourier decomposition is verified by the 
fact that the observed sine and cosine coefficients of the Fourier expansion are 
approximately equal. Therefore, the sample records could be approximated by the first 
few eigenvectors and smaller-wavenumber Fourier components with random phase. 

The eigenvector spectrum has been viewed as a scale decomposition since the scale 
generally decreases with increasing eigenvector number. This systematic variation of 
scale can be 'measured' by the compact joint eigenvector-Fourier decomposition for 
higher-order modes (figure 4) or by measuring the scale of the eigenvector in terms of 
the number of zero crossings (figure 6). 

Deviations from the -$ scaling are minimal. The slope of the Fourier spectrum is 
steeper than the -$ value toward the small-scale end of the observed scales, implying 
that the slope in the interior of the inertial subrange is slightly steeper than -$ in 
agreement with Borgas (1992). The slope is slightly flatter than the -: value at the 
large-scale end, probably due to the influence of the large eddies (figure 5a). The 
spectral slope is very close to -: for the eigenvector spectrum (figure 5b). The slope 
for the Haar spectrum is slightly flatter than the -$ value (figure 5c). The -: slope for 
the Haar spectrum is equivalent to the -$ scaling (for further discussion, see Yamada 
& Ohkitani, 1990 and Meneveau 1991). 

The approximate validity of the -5 scaling for a wide range of scales for the different 
spectrums of the phase-locked samples and the different spectra of the samples with 
random phase supports the robustness of this scaling law. In other words, the -$ 
prediction seems to be approximately valid independent of the basis sets examined here 
and occurs in spite of the inhomogeneity of the sample records of coherent structures. 

The energy at the largest scales is greater in the phase-locked samples than in the 
random phase samples owing to the contribution of the coherent structures. The 
coherent structures do not contain significantly greater small-scale energy than the 
regions between the coherent structures, indicating that the flow is everywhere fully 
turbulent. The ratio of the spectral energy for the vertical velocity compared to that for 
the horizontal velocity (not shown) is 4/3 as predicted by the isotropic theory of 
longitudinal and transverse correlations (e.g. Tennekes & Lumley 1972, ch. 8.1). 
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FIGURE 7. The joint decomposition of energy in Fourier-Haar space for the phase-locked structures. 
Numerical values at the corner grid points of the joint decomposition are indicated. 

4.3. Haar and Fourier spectra 
Compared to the Fourier spectrum, the largest dilation scale of the Haar spectrum 
(figure 5 c) contains more energy since it includes more of the variance associated with 
the phase-locked microfronts (figure 5 ,  7). As a result, the Haar spectrum exhibits a 
weak ' spectral gap ' between the largest scale representing the phase-locked structure 
and the smaller-scale more random variance. The weak spectral gap is also related to 
a relative shift of random-phase energy from larger to smaller scales.? This is evident 
from the projection of the Haar decomposition onto Fourier space where at low 
wavenumbers significant joint variance extends to the higher Haar modes (smaller 
dilation scale) evident in the upper left part of figure 7. 

This shift of energy to smaller scales in the Haar decomposition may also explain 
why the scaling law of the Haar decomposition extends to the smallest measured scales 
while the energy of the Fourier and eigenvector decompositions decrease faster toward 
the smallest scales. Counter to this shift, some of the variance associated with the 
microfront represented by the largest dilation width spreads to intermediate 
wavenumbers in the Fourier domain (figure 7). However, these shifts in the joint 
decomposition have little net effect over most of the -$ scaling range. 

4.4. Scaling laws for orthogonal polynomials and the structure function 
The random and phase-locked structures are also decomposed into orthogonal 
polynomials. The distribution of variance with polynomial order also exhibits a scaling 
law that is slightly flatter than -; (not shown) which provides more support for the 
robustness of the -: scaling law as an approximation. 

t The relative shift of energy to small scales in the Haar decomposition is partly related to the local 
nature of the Haar transform discussed in $6 and the local bandpass nature of the Haar transform 
which broadens at smaller scales, as can be deduced from the transfer matrix ((A 10) Appendix). 

Even though the first eigenvector captures most of the variance associated with the phase-locked 
structure, a spectral gap cannot occur in the eigenvector spectrum because each eigenvector 
maximizes explanation of the remaining variance. However the eigenvector spectrum does exhibit a 
change of slope at the transition between the lowest modes representing the phase-locked structure 
and the inertial subrange modes representing more random-phase motion. 

In formally comparing the joint decomposition we must note that there are twice as many 
eigenvectors as Fourier wavennmbers. Each Fourier wavenumber generates two coefficients. In fact 
the eigenvectors sometimes occur in obvious phase-shifted pairs with sinusoidal-like shape in which 
case two eigenvector modes approximate one complex Fourier mode. 
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The structure function does not represent an orthogonal decomposition but is 
instead an accumulating high-pass filter (Appendix, §A 3) .  The structure function for 
these data (not shown) satisfies the -; scaling law. 

5. Organization of the fine-scale structure by the coherent structures 
The organization of the fine-scale structure by the main eddies may be due to 

advection of small eddies by the larger eddies or generation of small-scale eddies 
through instability of the shear of the main eddies. The strong gradients concentrated 
at the microfronts directly contribute to the 'measured' fine-scale structure. The fine- 
scale structure is traditionally studied in terms of two-point velocity differences. In fact, 
assuming isotropy at the small scales, the square of the fluctuating divergence ( & u / & x ) ~  
has been used as a one-dimensional surrogate for the local dissipation (Nelkin & Bell 
1978) where Su is the two-point difference of the longitudinal velocity over distance ax. 

Higher moments of the velocity difference were important indicators of intermittency 
in the studies of Anselmet, Gagne & Hopfinger (1984), Antonia & Van Atta (1978) and 
others. We will evaluate the sixth moment of the structure function which serves as 
an estimate of the fine-scale variability of the energy cascade to smaller scales in the 
inertial subrange (Frisch et al. 1978; Nelkin & Bell 1978, eq. 7;  Anselmet et al. 1984). 
If the local dissipation is proportional to the local-scale transfer of energy, then the 
sixth moment is also a measure of the dissipation variance which in turn increases with 
intermittency of the dissipation. For the inertial subrange, the energy transfer variance 
is related to the structure function using the hypothesis of Oboukhov (1962), as in 
Frisch et al. (1978) 

Then (1 1) is averaged over all of the samples and plotted as a function of scale in 
figure 8. 

For scales small compared to the main eddy size, the average energy transfer 
variance, as estimated from the sixth-order structure function, is expected to 
approximately follow the similarity law (Nelkin & Bell 1978) 

(12) 
l L  
- C [u(xl + r )  - u(xt)]'/r2 = C, e2(r/L*)k, 
Ll=l 

where u is the longitudinal velocity component, L* is the lengthscale of the main eddies, 
c is the dissipation rate, C, is a non-dimensional coefficient and c6 is a correction to 
Kolmogorov similarity theory (Nelkin & Bell 1978). 

For comparison, the sixth moment of the Haar transform is also computed since the 
theoretical scaling arguments do not a priori dictate the way in which the velocity 
difference should be computed. The Haar transform is statistically more stable and for 
a given dilation width is more focused on a given scale (see the Appendix). In terms of 
the Haar transform, the scaling law assumes the form 

where C,* apd cz are companion coefficients to (12), a = 2r and normalization with the 
factor (2/a9 is required to pose (13) as differences of averages. As in the calculation of 
the structure function, the calculation of the Haar transform in this section spatially 
overlaps. We use all possible scales instead of the orthogonal dyadic set. 
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FIGURE 8. Scale dependence of the energy transfer variance estimated in terms of the structure 
function (1 1) and the Haar transform (1 3) for the random-phase samples. 

We will analyse only the random phase samples since the similarity relationship (12) 
is intended for application to stationary signals. Increasing the length of the samples 
exerts little influence on the scale dependence within the inertial subrange. The energy 
transfer variance based on the structure function (1 1) approximately obeys a scaling 
law with c6 = -0.15 (figure 8). 

The scaled energy transfer variance estimated in terms of the Haar transform (13) 
decreases more rapidly with increasing scale (figure 8) corresponding to a value of cz 
of approximately -0.4. The decrease of energy transfer variance with increasing scale 
was less when estimated in terms of the structure function because the structure 
function accumulates variance with increasing separation distance as discussed above. 
The value of varies less with scale than the corresponding coefficient for the structure 
function so that the scaling law is more applicable to the Haar transform. From a more 
general point of view, the higher-moment statistics depend on the way in which the 
differences are estimated. 

The spatial distribution of the energy transfer variance is estimated by performing 
a phase-locked composite for different relative positions within the phase-locked 
samples, that is 

1 s  

where the sixth-order velocity difference is averaged over all the samples for a given 
relative position within the samples, xt,  to form a phase-locked composite. As 
complementary information we will also compute the phase-locked composite in terms 
of the Haar transform 

(1 5)  
l S  

s,=, D t [ X , ,  01 = - c {(2lu9 m, a, bIY, 

where xi,= b. Both the structure function and the Haar transform predict the same 
relative importance of the microfronts (figure 9) ; the energy transfer variance is 
strongly concentrated in the microfront zone. While we are unable to directly compute 
local dissipation, figure 9 suggests that the intermittency of the energy transfer variance 
is partly related to microfronts. Defining a microfront zone of about 20 m width, the 
energy transfer variance in the microfront zone is about 20 times larger than outside 
the microfront zone. The width of the zone of enhanced energy transfer variance is 
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FIGURE 9. Phase-locked composite of the energy transfer variance, estimated in terms of the structure 
function from (14) (solid line) and the corresponding Haar transform from (15) ( x  lo2, dashed line) 
for r = ;a, = 12 m. 

influenced by the choice of 12 m as the separation distance and has been broadened 
owing to phase jittering associated with the sample selection and compositing. Since 
the samples occupy about 40 % of the total record, the microfront zones occupy about 
2% of the total record and account for about 40% of the total energy transfer 
variance. Consequently, figure 9 quantitatively indicates that a significant fraction of 
the small-scale energy transfer variance occurs with systematic phase with respect to 
the larger-scale structures. This is consistent with (but does not prove) the notion that 
locations of large production of turbulence are also locations of large dissipation 
(Kolmogorov 1962); the present study has identified these regions as sharp changes 
which are associated with coherent spatial structure on the scale of the main 
transporting eddies. 

This situation is somewhat different from the phase-locked composite of horizontal 
samples across the undulating turbulent-non-turbulent interface constructed by 
Kuznetsov et al. (1992). The interface was characterized by a strong horizontal 
gradient of the velocity field but the dissipation reached a maximum near the interface, 
naturally displaced to the turbulent side. In the present study, the turbulence is well 
developed on both sides of the microfront so that the maximum inferred dissipation is 
centred on the microfront. 

6. Global decomposition of records 
The decomposition in $4 projected phase-locked and random-phase samples onto 

different basis sets. In order to examine the spectra at larger scales and determine the 
scales of maximum energy, we now decompose the entire record into Fourier and Haar 
spectra without sampling of eventst. This is carried out by first removing the weak 

t Since the Haar transform is orthogonal in space, the exact decomposition with respect to the 
phase of a given coherent structure depends on the starting position of the record. This phase problem 
can be eliminated by computing the orthogonal Haar decomposition for different starting positions 
and then averaging the spectra, or, by constructing a complex wavelet basis set as in Grossmann & 
Morlet (1984), Farge & Rabreau (1988), Grossmann, Kronland-Martinet & Morlet (1989) and 
Liandrat & Moret-Bailly (1990). This phase problem has little effect on the spectral energy 
distribution for the present data set because the record is so long. 

The Haar wavelet transform can be computed for all possible dilations to provide better scale 
resolution for estimating the scale of maximum energy. The computation of the Haar transform for 
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FIGURE 10. Fourier (-Ap) and Haar (---O---) spectra for the longitudinal velocity 
component for the entire record length. 

linear trend in the signal and plotting the spectra in log-log coordinates with kE(k) as 
the vertical coordinate (Tennekes & Lumley 1972). In this case, the -$ scaling law 
assumes a -$ slope. 

The Haar and Fourier spectra for the entire record are approximately the same as 
the spectrum for the random-phase samples for the restricted range of scales covered 
by the samples ($4). The spectrum for the Fourier decomposition and the Haar 
decomposition of the longitudinal velocity component have similar shapes (figure 10) 
although the wavelength of the peak of maximum energy for the Fourier spectrum is 
approximately two times larger than the dilation of maximum energy for the Haar 
spectrum. Similar scale shifts occur for the relative minimum and maximum of the 
spectra at larger scales (figure 10). The Haar spectrum responds more to the width of 
the structures while the Fourier spectrum corresponds more to the periodicity of such 
perturbations which includes spacing between the structures. This feature of the 
Fourier spectrum can be shown using the development of Kharkevich (1960). In 
contrast the Haar transform is local so that it responds to the width of the events since 
phase information about the spacing between events is not included (Gamage 1990). 
This feature was verified by computing the Haar and Fourier spectra for simple 
artificial records consisting of different building blocks with various spacings. The scale 
shift of a little more than a factor of two implies that the spacing between the structures 
averages a little more than the width of the structures. This is consistent with the fact 
that the structures occupy about 40% of the record. 

7. Conclusions and discussion 
This study has examined the influence of coherent structures and associated 

microfronts on scaling laws. The microfronts are loosely defined as zones of 
concentrated shear and convergence which appear to be the leading edge of downward 
sweeps. We have selected samples of coherent structures centred about such shear 

all possible dilations in concert with the maximum overlap criterion provide transform values for all 
possible dilation scales a, and translation positions bmn. Different orthogonal decompositions can be 
constructed a posteriori. Each distinct orthogonal decomposition is related by the kernel of the 
wavelet transform (Mallat 1989). In the present analysis, we have computed the Haar spectrum only 
at dyadic scales since better scale resolution was not needed. 



Influence of coherent structures and microfronts on scaling laws 263 

zones. Although conditional sampling is never unique, the selected eddies containing 
the microfronts account for the majority of the momentum flux in the time series. The 
width of the samples was selected to optimize capture of the momentum flux. 

We have computed scaling laws for samples of these eddies as well as for random 
samples and for the entire record as a whole. Since scaling laws are theoretically argued 
without reference to specific basis sets, this study sought to estimate the dependence of 
the observed scaling relationships on the choice of basis set or method of computing 
gradients. The -! scaling law is found to be relatively insensitive to choice of basis set 
for the energy decomposition, within the ability of the data to define such slopes. This 
tentative conclusion is based on decomposition of samples of coherent structures into 
the usual Fourier modes, the local Haar basis set, and eigenvectors of the lagged 
correlation matrix (EOF’s or POF’s). The -$ scaling law in the eigenvector 
decomposition can be predicted from the observation that the intermediate- and 
higher-order eigenvectors are each compact in Fourier space and characterized by 
random phase with respect to the coherent structures. The evaluation of the higher- 
order eigenvectors was statistically possible in this study because of the very long 
record length. The decomposition of the variance into the local Haar decomposition 
also obeys the -: scaling. 

Since the coherent structures are captured by the lowest-order modes in all three 
decompositions, the -$ scaling law at smaller scales is relatively unaffected by the 
strong spatial inhomogeneity of the phase-locked structures. Consequently, motions 
with random phase dominate the coefficients of the intermediate- and higher-order 
modes leading to the -: scaling law. The deviations from -5 scaling are small and 
depend on the basis set. 

The microfronts are captured more efficiently by the lower-order modes in the 
eigenvector and Haar decompositions as shown in the joint decomposition ($4). Such 
microfronts contribute to the high-wavenumber energy of the Fourier decomposition 
in spite of the fact that they are part of the overall structure of the larger coherent 
structures and thus occur with systematic phase with respect to these eddies. However, 
the influence of the microfronts on the energy spectrum appears to be relative small 
owing to the small spatial coverage of the microfronts. 

The microfronts exert a much larger influence on higher-order statistics such as the 
energy transfer variance (sixth-order moment of velocity differences). The narrow 
microfront zones occupy about 2 YO of the total record but explain about 40 YO of the 
small-scale energy transfer variance. This is a direct measure of the characteristic that 
the energy transfer variance is less space filling at smaller scales. 

When applied to entire records without capturing phase-locked coherent structures, 
the shape of the Haar and Fourier spectra are similar. However, the maximum energy 
of the Haar transform occurs at a scale two or three times smaller than the Fourier 
spectrum. The Haar transform is local so that the energy maximum estimates the width 
of the main coherent structures. The scale of the energy maximum of the Fourier 
spectrum is additionally influenced by the spacing between the coherent structures. 
Thus the two spectra offer complementary information. Since the Haar spectrum can 
be computed easily and inexpensively, we recommend that it be evaluated as useful 
supplementary information whenever computing the Fourier spectrum. 

Other orthonormal wavelet bases, in addition to the Haar bases, can be applied. We 
found that smoother wavelet basis functions yielded slightly more extensive scaling 
regions. However, the choice of the wavelet basis set was not as important as the local 
character of the basis functions, as previously concluded by Meneveau (1991). The 
Haar basis was used here because of its simple comparison with the structure function 
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(A 23),  Appendix). Similarly, using different global basis sets, such as the Walsh basis 
(top-hat trains) produced spectra quite similar to the Fourier spectra. 

The computational assistance and comments of Sirlath Desilva and the comments of 
Nimal Gamage and the reviewers are greatly appreciated. This material is based upon 
work supported by the USARO under grant DAAL04-93G-0019 and by the Physical 
Meteorology Program of the National Science Foundation under grant ATM- 
8912736. 

Appendix. Joint projection of covariance between basis sets 
A. 1. Notation 

A ( j , p ,  l), A ( J , ~ ,  2): coefficient for the projection of the pth eigenvector onto the jth 

a :  dilation scale in discrete points; 
a, : orthogonal dilation scale in discrete points; 
B(j,p. l), B( j ,p ,  2): coefficient for the projection of the pth eigenvector onto the jth 

b : translate position ; 
b,, : orthogonal translate position; 
C,, : shifted translation position (geometric centre of wavelet transform) ; 

Fourier sine mode for variables 1 and 2, respectively; 

Fourier cosine mode for variables 1 and 2, respectively; 

C"LP) = 4 A p ,  1 ) 4 , p ,  2) /2+B(j ,p ,  l ) W , P ?  2)/2; 
O"j,p) = Var (W,) C"j,p); 
E(k):  spectral energy density as a function of wavenumber k ;  
fs(x),f,l(x),fs2(x): dependent variables for the sth sample or record projected onto the 

his : amplitude of the jth Fourier mode for the sth sample or record; 
h[Z, b,,, a,] : orthogonal wavelet basis function; 
kj : the jth Fourier wavenumber; 
1: position index within sample record, L:  total number of points within sample record; 
m: index for orthogonal dilation scale, M :  total number of orthogonal dilation scales; 
n:  translation index, N :  maximum number of orthogonal translates = 2'-m; 
p :  index for the eigenvector or other global basis set; 
q:  second index for the eigenvector or other global basis set; 
r : separation distance for the structure function ; 
s: index for sample or record number, S :  total number of samples or records; 
Var (W,): variance explained by pth eigenvector; 
Var [ W(a,)] : variance explained by dilation scale a,  in the Haar decomposition; 
x : horizontal position; 
xl : discretized horizontal position within sample or record; 
W{f,,p} : transformation of f,(x) for pth basis function ; 
W{f, ,  a,, bmn}: Haar transformation off,(x) for dilation scale a, and translation b,,; 
Ax : distance between points ; 
q5[l,p], $JZ,p], $JZ,p] : eigenvector or other global basis functions. 

The scaling laws in different basis sets are related by the transfer matrix between the 
basis sets. While the relationship between scaling laws in different basis sets cannot be 
predicted a priori, examination of the transfer matrix does put some restrictions on the 
variation of the scaling laws between the basis sets and provides a formal definition for 
the joint projections in $4. 

discretized grid ; 
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A.2. Joint projection between Fourier and Haar bases 
Using (6), the decomposition of the covariance between two variables f,,(x) and f,,(x) 
for the sth turbulent structure can be projected onto the Haar basis set as 

L M N  l L  
- Cf,1(x)f,z(x) = (1/L) C C C W{fsl, am, bmnI h[l, bmn, am] 
LZ=, 1=1 m=l  n = l  

M N  

x C C WIf,,, am,, bm'n,} h[l, bm,n,> am,], (A 1) 
m'=] n'=1 

where the covariance is computed by summing over the L points in the sample record. 
Noting that the Haar transform does not depend on 1 in the above summation and 
recalling that the basis set is orthonormal, (A 1) assumes the form 

L M N  

Cfs1(x)f,z(~> = C C W{fs1 ,  am, bmn} W{f,,, am, bmn}. (A 2) 

For decomposition of variance, f,,(x) = L2(x), (A 2) becomes Parseval's relation for 

(A 3) 

z=1 m=l n=l 

M N  
the Haar transform 

C If,1(x)Iz = C C v{f,1, am, bmnI. 
2=1 m=l n = l  

We now consider the relationship between the above Haar decomposition and the 
complex discrete Fourier transform. The discrete Fourier basis elements are defined 
here as 

where the integersj and 1 both range from 1 to L where L is again the total number 
of points in the sample, also equal to 2M. We write the Fourier decomposition for the 
8th sample as 

L 

f s ( x z )  = 2-M/2 Cfjsetki2, (A 4) 
i=1 

where the transform coefficients are defined as 
L 

f j s  = 2-M/2 Ef,(x,)e-W". (A  5 )  
2=1 

Parseval's relation for this expansion is written as 
L L 

C VE(Xl)l2 = C Ifis12, (A 6)  
1=1 j = 1  

where j = 1 in general represents the mean value of f , ( x 2 )  which in this case has been 
removed. 

To construct the joint Haar-Fourier decomposition of variance we project the 
discrete Fourier expansion of f , (x , )  onto the Haar basis. Substituting the inverse 
Fourier transform into the Haar transform (7) we obtain 

L L 

Wth,am, bmn} = c [2-"'2 ~ f j s  e' 'k.21 3 bmn, am], (A 7) 

where again h[Z,bmn,am] is non-zero only over a subinterval of width am. After 
reversing the order of summation and noting that thej = 1 term makes no contribution, 
it follows that 

1=1 j=1 

WCf,, am, bm,J = 2-Mi2 h[l, bm,, am1 eikl1 . (A 8) I 
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The inner sum in (A 8) is the inner product of a wavelet basis element with a Fourier 
basis element. To evaluate this inner product we note that it is non-zero only over the 
inclusive interval [b,,, b,, +a,  - 11. To simplify the ensuing mathematics we define a 
translated coordinate I* so that 

1 = I* + C,,, C,, = b,, + (a,/2) -$, 
where C,, is at the geometric centre of the transformation window. Using ( 5 )  

C,, = (n-ija,+i. (A 9) 

Applying this coordinate shift and using the definition of the Haar function (8), the 
inner product in (A 8) can be written as 

Carrying out the summation, we obtain 
L 

h[l, b,,, am]eikrl = (e"jcmn)(a,)4i[l -cos(kia,/2)]/sin(kj/2) 
z=1 

= (eikjCmm) T(kj, a,). (A 10) 
We will refer to T(k,,a,) as the transfer matrix. 

From (A 8) and (A lo), we obtain 
L 

Wf,, a,, b m n I  = 2-''2 X&fist(eikjCmn) T(kj, a,)]. (A 11) 
j=2 

The variance (A 3) can be computed by squaring (A 1 l), which leads to non-zero cross- 
terms. These cross-terms are associated with the combination of the local nature of the 
Haar transform and the global nature of the Fourier transform. For example phase 
information represented by the factor eikjCm. is not contained in the local Haar 
transform. However (A 11) and the definition of the transfer matrix (A 10) do 
demonstrate the band-pass nature of the Haar transform. This characteristic is evident 
in 54 where the joint decomposition between the Haar and Fourier bases were 
computed using actual data. Since this variance projection cannot be explicitly 
computed from (A ll),  it was instead computed by first decomposing the flow into 
Fourier modes and then projecting each Fourier mode onto the Haar bases. 

A.3. Joint projection of covariance between Fourier and eigenvector decompositions 
We now formalize the relationship between the eigenvector and Fourier decomposition 
for the covariance in the discrete case, applied to actual data in $4. The covariance 
between two variablesf,,(x) andh2(x) for the sth turbulent structure can be projected 
onto the eigenvector basis set as 

I L L  L 

(A 12) 
l L  
- Z f , l ( X ) f , Z ( X )  = - c c z [W(P? s) $l(P, 0 W q ,  s) $2(4> 01, 
L I-1 L 2=1 p-1 q=l  

where W(p,s) and W(q,s) represent the expansion coefficients for the pth and qth 
eigenvectors, respectively, and $l(p, 1) is the pth eigenvector for the first variable and 
q5&, I )  is the qth eigenvector for the second variable. The total number of eigenvectors 
is equal to L, the number of points in the sample records. 

The eigenvectors for two or more variables can be computed simultaneously by 
staking variables into one observational vector to study the total lagged covariance 
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between the variables. Then q51(p, I) and q5,(q, I) are the parts of the same eigenvector 
associated with fS,(x) and f s z (x ) ,  respectively, and the expansion coefficient W(p, s) 
applies to the entire eigenvector. In the data analysis of 94, we examine the joint 
decomposition of the variance of the longitudinal velocity component in which case 

To compute the total covariance for the population of sampled structures, we 
average (A 12) over the S samples and note that the expansion coefficients for the 
different eigenvectors are uncorrelated. We then obtain 

f&> =f , (x> = 4x1. 

L L 

(A 13) 
l S I L  
- c - cf, l(x>f, ,(x> = c Var (W,) c s,=, L 1=1 P-1 E=l 

1)  $ 2 ( R  4, 

l S  
SL s=l 

Var (W,) = - c W(p, s). 

The covariance for a given eigenvector is proportional to the energy attributed to the 
eigenvector, as represented by the square of the expansion coefficient (A 14). The 
covariance is also proportional to the correlation between the two parts of the 
eigenvector corresponding to the respective variables in the covariance. 

For comparison, the eigenvector decomposition can be projected onto a more 
traditional basis set (Sirovich 1987) such as sines and cosines. The decomposition of the 
pth eigenvector for variablesf,,(x) into a Fourier series can be written as 

I, \ ~ 

$ J p ,  1) = CI &,p, 1) sin (kj 1) + B(j ,p ,  1) cos (kj I ) ,  I = 1, . . . , L, 
j=1 

kj  = 2 ~ ( j -  l)/L, J 
where here A ( j , p ,  1) and B( j ,p ,  1) are the coefficients of the Fourier series for the pth 
eigenvector for variable 1 and L is the number of points in the sample records. 
Substituting (A 15) and the analogous expression for XJx) into the expression for 
within-sample covariance (A 13), we obtain 

l S I L  

{ L  
-c -cf,l(4f,,(x> = c Var(w,)C x A(j,P? 1)sin(kjI)+B(j?p, l ) c o s ( ~ j ~ ) }  

L 

s L 1=1 p=1 j=1 1=1 

I L 

x c A(j ,p ,2)s in(k jI )+B( j ,p ,2)cos(k j l )  . (A 16) 

Applying the orthogonality of the sine and cosine modes when averaged over the 
L1 

sampled structure, (A 16) becomes 
L L L L  l S I L  

- c - Xf, , (x)fS,(x)  = c Var(W,) c C".LP) = c c 0 2 ( i P ) ,  s S = l  L lZl  p=1 j = 1  p=1 j=1 
(A 17) 

where 

C"j,P) = A(j,P, 1)A(j,P32)/2+W,P, l)B(j,P,2)/2, 

02( ( j , p )  = Var (w,) C ( j , p ) .  (A 18) 
P ( j , p )  represents covariance of the pth eigenvector described by the jth Fourier mode 
and C(j,p) is a transfer matrix. In the data analysis of this study, we will decompose 
the variance so that f , ,(x) = f,,(x). Then the product A ( j , p ,  1) A ( j , p ,  2) reduces to 
A 2 ( j , p ,  1) and so forth. The sum 
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is the spectrum (or cospectrum) based on the eigenvector basis set and is computed 
from the data in $4. 

The Fourier cospectrum can be recovered by noting that Var ( W,) is independent of 
the Fourier wavenumber and switching the order of summation in (A 17), in which case 
we obtain 

where 
L 

C; = 2 Var( W,) C2((j,p). 
p=1 

This decomposition of variance in the Fourier spectral domain relates the covariance 
in each Fourier mode to the contributions from the P different eigenmodes. Therefore 
the projections (A 17)-(A 19) show the relationship between the scale dependence 
based on the eigenvector decomposition and the scale dependence based on the Fourier 
modes, which is evaluated from actual data in the joint decomposition in $4. 

A.4. Scaling laws for  the structure function and Haar bases 
The averaging over the two halves of the Haar transform partially removes the 
influence of smaller scales while the structure function is influenced by variations on all 
scales smaller than r.  That is the Haar transform is equivalent to averagingAxJ over 
the two half-widths of the transformation window, and then computing the difference 
between these two means. To explicitly show the relationship between the structure 
function and the Haar transform, we define the deviation from the half-window means, 
f’(x,) andf’(x, + r), and express the half-window means in terms of the Haar transform 
so that 

f ( x J  = f’(xz) + h(2r, xz) W(2r, b), f (x,  + r)  =f’(x2 + r)  + h(2r, xz + r)  W(2r, b), (A 20) 

(A 21) 

and W(2r, b) is the coefficient of the Haar transform for a single dilation 2r, and b is 
again the first point of the Haar transform window. The structure function is computed 
over the same domain as the Haar transform window by incrementing the position of 
the two-point difference one point at a time. Then using (A 20), the structure function 
becomes 

h(2r, xz) = -(a)” = - (2r)-a, h(2r, x1 + r )  = + (2r)-i, 

- [f’(x,) + h(2r7 xi) W 2 r ,  b)1I2. (A 22) 

We carry out the multiplication on the right-hand side and note that h(2r,x,), 
h(2r, x2 + r),  and W(2r, b) are all constant over each half-window so that all terms that 
are linear in f ’ ( x , )  or f’(xz + r)  sum to zero. Then (A 22) becomes 

(A 23) 
1 ‘  l r  
- C Mxz + r )  -f(xz)lz = 2 V ( 2 r ,  b) + - C [f ’(x, + r)  - ~ ’ ( x J ] ~ .  
r z = 1  r 1-1 

Therefore the structure function can be written as the Haar estimate of the square of 
the velocity difference plus a contribution due to variations on scales smaller than the 
separation distance r (second term on the right hand side of (A 23)). 

By expandingf’(x,) andf’(x, + r)  in terms of the Haar basis, one can show that the 
scaling law for dependence of variance on scale in terms of the Haar transform is 
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related to the scaling law for the structure function. Indeed, the structure function and 
the corresponding Haar calculation for the phase-locked samples and the random 
samples both show approximate - scaling. However, the higher-moment calculations 
are more sensitive to the way differences are computed and to the occurrence of phase- 
locked structure, as shown in $ 5 .  
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